Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Comput Biol Med ; 173: 108396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574529

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Metilação de DNA , Microambiente Tumoral , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo
2.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 4): 347-350, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584727

RESUMO

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino-naphthalene through two-step reactions of acetyl-ation and nitration. The mol-ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl-amino group (C-6). In the crystal, the mol-ecules are assembled into two-dimensional sheet-like structures by inter-molecular N-H⋯O and C-H⋯O hydrogen-bonding inter-actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.

3.
RSC Adv ; 14(16): 11217-11231, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38590351

RESUMO

The present investigation delves into the adverse environmental impact of atmospheric pollutant gases, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), which necessitates the identification and implementation of effective control measures. The central objective of this study is to explore the eradication of these pollutants through the utilization of aluminum Al13 and Al15 metal clusters, distinguished by their unique properties. The comprehensive evaluation of gas/cluster interactions is undertaken employing density functional theory (DFT). Geometric optimization calculations for all structures are executed using the ωB97XD functional and the Def2-svp basis set. To probe various interaction modalities, gas molecule distribution around the metal clusters is sampled using the bee colony algorithm. Frequency calculations employing identical model chemistry validate the precision of the optimization calculations. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) methodologies are applied for the analysis of intermolecular interactions. This research establishes the robust formation of van der Waals attractions between the investigated gas molecules, affirming aluminum metal clusters as viable candidates for the removal and control of these gases.

4.
Transl Cancer Res ; 13(3): 1394-1405, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38617517

RESUMO

Background: Lung cancer (LC) is a leading cause of cancer-associated mortality worldwide, with high incidence and mortality rates. Ly6/PLAUR domain containing 3 (LYPD3) is a tumorigenic and highly glycosylated cell surface protein that has been rarely reported in LC. This study aimed to explore the prognostic role and immune cell infiltration of LYPD3 in LC. Methods: We used ExoCarta, a database of exosomal proteins and RNA, to select exosomes in LC. The Tumor Immune Estimation Resource (TIMER) and Human Protein Atlas (HPA) databases were utilized to compare the expression of LYPD3 in LC. We applied Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier (KM) plotter to evaluate the prognostic prediction performance of LYPD3. Biological processes (BPs), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and gene set enrichment analysis (GSEA) analyses were performed to illustrate the possible role of LYPD3 in LC. The correlations between LYPD3 and immune cell infiltration were explored using Tumor and Immune System Interaction Database (TISIDB), GEPIA2, and TIMER. R software was used for statistical analysis and mapping. Results: A total of 904 exosome molecules were screened in LC. Further analysis showed that the up-regulation of LYPD3 in these 904 exosome molecules was associated with poor prognosis in LC. Pan-cancer analyses revealed that the expression of LYPD3 varied in many cancers, particularly in LC. Clinical correlation analysis indicated that LYPD3 was associated with stage and T classification in LC. We observed that LYPD3 co-expression genes were associated with cell cycle, DNA replication, proteasome, and regulation of the actin cytoskeleton by GSEA. Moreover, LYPD3 was associated with immune modulators. Immunophenoscores (IPS) and IPS-CTLA4 were significantly different between the high LYPD3 group and low LYPD3 group. Additionally, the median half maximal inhibitory concentration (IC50) of bexarotene, cyclopamine, etoposide, and paclitaxel in LYPD3 high group was significantly lower than that in LYPD3 low group. Conclusions: LYPD3 is involved in many BPs of LC, such as regulating immune cell infiltration and affecting prognosis. Therefore, LYPD3 may have potential value as a biomarker for prognosis and immunotherapy in LC.

5.
J Hematol Oncol ; 17(1): 16, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566199

RESUMO

Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.


Assuntos
Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Imunoterapia , Diferenciação Celular , Nanopartículas/uso terapêutico , Neoplasias/terapia
6.
Neural Netw ; 175: 106319, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38640698

RESUMO

To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.

7.
Diabetes Metab Syndr Obes ; 17: 1575-1583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616992

RESUMO

Purpose: This study seeks to assess the potential of early pregnancy Triglyceride Glucose Index (TyG), triglyceride to High-Density Lipoprotein Cholesterol ratio (TG/HDL-c), Low-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol ratio (LDL-C/HDL-C), and Total Cholesterol to High-Density Lipoprotein Cholesterol ratio (TC/HDL-C) in predicting Gestational Diabetes Mellitus (GDM). Patients and Methods: A total of 1073 adults singleton pregnant women were enrolled from June 2017 to September 2019. Complete anthropometric data and lipid profiles were measured in the first trimester (before 12 weeks gestation) and a 75g oral glucose tolerance test (OGTT) at 24-28 weeks was performed. Based on OGTT results, participants were categorised into Normal Glucose Tolerance (NGT) group (n=872) and GDM group (n=201). General data, laboratory test results, and surrogate insulin resistance indicators such as TyG index, TG/HDL-C, LDL-C/HDL-C, and TC/HDL-C were documented and compared. To compare differences between the two groups, t-test was used, Spearman correlation analysis and linear regression analysis were performed to establish associations between these indicators and insulin resistance in GDM. Receiver Operating Characteristic (ROC) curves were generated to compare the thresholds of these indicators for predicting GDM during pregnancy and to quantify overall diagnostic accuracy. Results: Individuals with GDM had higher TyG, TG/HDL-C, and LDL-C/HDL-C levels (P < 0.001), but with no significant difference observed in TC/HDL-C. All four ratios were positively correlated with Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), yet only TyG emerged as an independent risk factor for HOMA-IR. The Area under the Curve (AUC) of TyG index (0.692) was comparable to that of HOMA-IR (0.703). The cut-off points for TyG index, TG/HDL-C, and HOMA-IR in predicting GDM were 7.088, 0.831, and 1.8, respectively. HOMA-IR exhibited the highest sensitivity (79.1%), while TyG index (64.3%) and TG/HDL-C ratio (64.3%) demonstrated better specificity compared to HOMA-IR (56.3%). LDL-C/HDL-C and TC/HDL-C offered no discernible predictive advantage. Conclusion: Early pregnancy TyG index and TG/HDL-C can aid in identifying pregnant women at risk for GDM, potentially facilitating early and effective intervention to improve prognosis. TyG index exhibited superior predictive capability compared to TG/HDL-C.

8.
Heliyon ; 10(7): e28878, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623253

RESUMO

Background: Prostate cancer (PCa) is one of the leading causes of cancer death in men. About 30% of PCa will develop a biochemical recurrence (BCR) following initial treatment, which significantly contributes to prostate cancer-related deaths. In clinical practice, accurate prediction of PCa recurrence is crucial for making informed treatment decisions. However, the development of reliable models and biomarkers for predicting PCa recurrence remains a challenge. In this study, the aim is to establish an effective and reliable tool for predicting the recurrence of PCa. Methods: We systematically screened and analyzed potential datasets to predict PCa recurrence. Through quality control analysis, low-quality datasets were removed. Using meta-analysis, differential expression analysis, and feature selection, we identified key genes associated with recurrence. We also evaluated 22 previously published signatures for PCa recurrence prediction. To assess prediction performance, we employed nine machine learning algorithms. We compared the predictive capabilities of models constructed using clinical variables, expression data, and their combinations. Subsequently, we implemented these machine learning models into a user-friendly web server freely accessible to all researchers. Results: Based on transcriptomic data derived from eight multicenter studies consisting of 733 PCa patients, we screened 23 highly influential genes for predicting prostate cancer recurrence. These genes were used to construct the Prostate Cancer Recurrence Prediction Signature (PCRPS). By comparing with 22 published signatures and four important clinicopathological features, the PCRPS exhibited a robust and significantly improved predictive capability. Among the tested algorithms, Random Forest demonstrated the highest AUC value of 0.72 in predicting PCa recurrence in the testing dataset. To facilitate access and usage of these machine learning models by all researchers and clinicians, we also developed an online web server (https://urology1926.shinyapps.io/PCRPS/) where the PCRPS model can be freely utilized. The tool can also be used to (1) predict the PCa recurrence by clinical information or expression data with high accuracy. (2) provide the possibility of PCa recurrence by nine machine learning algorithms. Furthermore, using the PCRPS scores, we predicted the sensitivity of 22 drugs from GDSC2 and 95 drugs from CTRP2 to the samples. These predictions provide valuable insights into potential drug sensitivities related to the PCRPS score groups. Conclusion: Overall, our study provides an attractive tool to further guide the clinical management and individualized treatment for PCa.

9.
Genome Med ; 16(1): 49, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566201

RESUMO

BACKGROUND: The efficacy of neoadjuvant chemo-immunotherapy (NAT) in esophageal squamous cell carcinoma (ESCC) is challenged by the intricate interplay within the tumor microenvironment (TME). Unveiling the immune landscape of ESCC in the context of NAT could shed light on heterogeneity and optimize therapeutic strategies for patients. METHODS: We analyzed single cells from 22 baseline and 24 post-NAT treatment samples of stage II/III ESCC patients to explore the association between the immune landscape and pathological response to neoadjuvant anti-PD-1 combination therapy, including pathological complete response (pCR), major pathological response (MPR), and incomplete pathological response (IPR). RESULTS: Single-cell profiling identified 14 major cell subsets of cancer, immune, and stromal cells. Trajectory analysis unveiled an interesting link between cancer cell differentiation and pathological response to NAT. ESCC tumors enriched with less differentiated cancer cells exhibited a potentially favorable pathological response to NAT, while tumors enriched with clusters of more differentiated cancer cells may resist treatment. Deconvolution of transcriptomes in pre-treatment tumors identified gene signatures in response to NAT contributed by specific immune cell populations. Upregulated genes associated with better pathological responses in CD8 + effector T cells primarily involved interferon-gamma (IFNγ) signaling, neutrophil degranulation, and negative regulation of the T cell apoptotic process, whereas downregulated genes were dominated by those in the immune response-activating cell surface receptor signaling pathway. Natural killer cells in pre-treatment tumors from pCR patients showed a similar upregulation of gene expression in response to IFNγ but a downregulation of genes in the neutrophil-mediated immunity pathways. A decreased cellular contexture of regulatory T cells in ESCC TME indicated a potentially favorable pathological response to NAT. Cell-cell communication analysis revealed extensive interactions between CCL5 and its receptor CCR5 in various immune cells of baseline pCR tumors. Immune checkpoint interaction pairs, including CTLA4-CD86, TIGIT-PVR, LGALS9-HAVCR2, and TNFSF4-TNFRSF4, might serve as additional therapeutic targets for ICI therapy in ESCC. CONCLUSIONS: This pioneering study unveiled an intriguing association between cancer cell differentiation and pathological response in esophageal cancer patients, revealing distinct subgroups of tumors for which neoadjuvant chemo-immunotherapy might be effective. We also delineated the immune landscape of ESCC tumors in the context of clinical response to NAT, which provides clinical insights for better understanding how patients respond to the treatment and further identifying novel therapeutic targets for ESCC patients in the future.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Terapia Neoadjuvante , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Terapia Combinada , Microambiente Tumoral , Ligante OX40
10.
Plants (Basel) ; 13(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674504

RESUMO

In the production of economic forests, there are common issues such as excessive application of water and fertilizer, redundant plant growth, and low economic benefits. Reasonable water and fertilizer management can not only help address these problems but also improve the absorption and use efficiency of water and fertilizer resources by plants, promoting the green and efficient development of the fruit and forestry industry. In order to explore a suitable water and nitrogen management mode for Lycium barbarum, field experiments were conducted in this study from 2021 to 2022. Specifically, four irrigation modes (according to the proportion ratio of soil moisture content to field moisture capacity θf, 45-55% θf (W1, severe water deficiency), 55-65% θf (W2, moderate water deficiency), 65-75% θf (W3, mild water deficiency), and 75-85% θf (W4, sufficient irrigation)) and four nitrogen application levels (0 kg·ha-1 (N0, no nitrogen application), 150 kg·ha-1 (N1, low nitrogen application level), 300 kg·ha-1 (N2, medium nitrogen application level), and 450 kg·ha-1 (N3, high nitrogen application level)) were set up to analyze the influences of water and nitrogen control on the plant height, stem diameter, chlorophyll content, photosynthetic characteristics and yield, and economic benefits of Lycium barbarum in the Lycium barbarum + Alfalfa system. The study results show that the plant height and stem diameter increment of Lycium barbarum increase with the irrigation amount, increasing first and then decreasing with the increase in the nitrogen application level. Meanwhile, the chlorophyll contents in Lycium barbarum continuously increase throughout their growth periods, with Lycium barbarum treated with W4N2 during all growth periods presenting the highest contents of chlorophyll. In a Lycium barbarum + Alfalfa system, the daily variation curve of the Lycium barbarum net photosynthetic rate presents a unimodal pattern, with maximum values of the daily average net photosynthetic rate and daily carboxylation rate appearing among W4N2-treated plants (19.56 µmol·m-2·s-1 and 157.06 mmol·m-2·s-1). Meanwhile, the transpiration rates of Lycium barbarum plants continuously decrease with the increased degree of water deficiency and decreased nitrogen application level. W1N2-treated plants exhibit the highest leaf daily average water use efficiency (3.31 µmol·s-1), presenting an increase of 0.50-10.47% in efficiency compared with plants under other treatments. The coupling of water and nitrogen has significantly improved the yields and economic benefits of Lycium barbarum plants, with W4N2-treated and W3N2-treated plants presenting the highest dried fruit yield (2623.07 kg·ha-1) and net income (50,700 CNY·ha-1), respectively. Furthermore, compared with other treatment methods, these two treatment methods (W4N2 and W3N2) exhibit increases of 4.04-84.08% and 3.89-123.35% in dried fruit yield and net income indexes, respectively. Regression analysis shows that, in a Lycium barbarum + Alfalfa system, both high yields and economic benefits of Lycium barbarum plants can be achieved using an irrigation amount of 4367.33-4415.07 m3·ha-1 and a nitrogen application level of 339.80-367.35 kg·ha-1. This study can provide a reference for improving the productivity of Lycium barbarum plants and achieving a rational supply of water and nitrogen in Lyciun barbarum + Alfalfa systems in the Yellow River Irrigation Area of Gansu, China, and other similar ecological areas.

11.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663278

RESUMO

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Assuntos
Glicerol , Magnésio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Glicerol/química , Glicerol/farmacologia , Magnésio/química , Magnésio/farmacologia , Camundongos , Seda/química , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens , Humanos , Ratos , Nanofibras/química , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Células Endoteliais da Veia Umbilical Humana , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados
12.
Sensors (Basel) ; 24(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544033

RESUMO

In order to mitigate the risk of roof-dominated coal burst in underground coal mining, horizontal long borehole staged hydraulic fracturing technology has been prevailingly employed to facilitate the weakening treatment of the hard roof in advance. Such weakening effect, however, can hardly be evaluated, which leads to a lack of a basis in which to design the schemes and parameters of hydraulic fracturing. In this study, a combined underground-ground integrated microseismic monitoring and transient electromagnetic detection method was utilized to carry out simultaneous evaluations of the seismic responses to each staged fracturing and the apparent resistivity changes before and after all finished fracturing. On this basis, the comparable and applicable fracturing effects on coal burst prevention were evaluated and validated by the distribution of microseismic events and their energy magnitude during the mining process. Results show that the observed mining-induced seismic events are consistent with the evaluation results obtained from the combined seismic-electromagnetic detection method. However, there is a limited reduction effect on resistivity near the fractured section that induces far-field seismic events. Mining-induced seismic events are concentrated primarily within specific areas, while microseismic events in the fractured area exhibit high frequency but low energy overall. This study validates the rationality of combined seismic-electromagnetic detection results and provides valuable insights for optimizing fracturing construction schemes as well as comprehensively evaluating outcomes associated with underground directional long borehole staged hydraulic fracturing.

13.
Front Oncol ; 14: 1361093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529371

RESUMO

Background: Prostate cancer is the most common malignant tumor of male genitourinary system, and the gold standard for its diagnosis is prostate biopsy. Focusing on the methods and skills of prostate biopsy, we explored the learning curve and experience of a novel magnetic resonance imaging and transrectal ultrasound (mpMRI-TRUS) image fusion transperineal biopsy (TPB) technique using electromagnetic needle tracking under local anesthesia. Methods: The clinical and pathological data of 92 patients who underwent targeted TPB from January 2023 to July 2023 in our center were prospectively collected. The cumulative sum (CUSUM) analysis method and the best fitting curve were used to analyze the learning curve of this novel technique, and the clinical characteristics, perioperative data and tumor positive rate of prostate biopsy of patients at different stages of the learning curve were compared. Results: With the increase of the number of surgical cases, the overall operative time showed a downward trend. The best fitting curve of CUSUM reached its peak at the twelfth case, which is the minimum cumulative number of surgical cases needed to cross the learning curve of the operation. Taking this as the boundary, the learning curve is divided into two stages: learning improvement stage (group A, 12 cases) and proficiency stage (group B, 80 cases). The surgical time and visual analog scale score during prostate biopsy in group A were significantly higher than those in group B. The visual numerical scale score during prostate biopsy in group A was significantly lower than that in group B. There was no statistically significant difference between group A and group B in the detection rate of csPCa and the incidence of perioperative complications. Conclusion: The novel targeted TPB technique is divided into learning improvement stage and proficiency stage, and 12 cases may be the least cumulative number.

14.
J Magn Reson Imaging ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456745

RESUMO

BACKGROUND: The human epidermal growth factor receptor 2 (HER2) has recently emerged as hotspot in targeted therapy for urothelial bladder cancer (UBC). The HER2 status is mainly identified by immunohistochemistry (IHC), preoperative and noninvasive methods for determining HER2 status in UBC remain in searching. PURPOSES: To investigate whether radiomics features extracted from MRI using machine learning algorithms can noninvasively evaluate the HER2 status in UBC. STUDY TYPE: Retrospective. POPULATION: One hundred ninety-five patients (age: 68.7 ± 10.5 years) with 14.3% females from January 2019 to May 2023 were divided into training (N = 156) and validation (N = 39) cohorts, and 43 patients (age: 67.1 ± 13.1 years) with 13.9% females from June 2023 to January 2024 constituted the test cohort (N = 43). FIELD STRENGTH/SEQUENCE: 3 T, T2-weighted imaging (turbo spin-echo), diffusion-weighted imaging (breathing-free spin echo). ASSESSMENT: The HER2 status were assessed by IHC. Radiomics features were extracted from MRI images. Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) were applied for feature selection, and six machine learning models were established with optimal features to identify the HER2 status in UBC. STATISTICAL TESTS: Mann-Whitney U-test, chi-square test, LASSO algorithm, receiver operating characteristic analysis, and DeLong test. RESULTS: Three thousand forty-five radiomics features were extracted from each lesion, and 22 features were retained for analysis. The Support Vector Machine model demonstrated the best performance, with an AUC of 0.929 (95% CI: 0.888-0.970) and accuracy of 0.859 in the training cohort, AUC of 0.886 (95% CI: 0.780-0.993) and accuracy of 0.846 in the validation cohort, and AUC of 0.712 (95% CI: 0.535-0.889) and accuracy of 0.744 in the test cohort. DATA CONCLUSION: MRI-based radiomics features combining machine learning algorithm provide a promising approach to assess HER2 status in UBC noninvasively and preoperatively. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

15.
World J Gastrointest Surg ; 16(2): 616-621, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38463358

RESUMO

BACKGROUND: The overlap of imaging manifestations among distinct splenic lesions gives rise to a diagnostic dilemma. Consequently, a definitive diagnosis primarily relies on histological results. The ultrasound (US)-guided coaxial core needle biopsy (CNB) not only procures sufficient tissue to help clarify the diagnosis, but reduces the incidence of puncture-related complications. CASE SUMMARY: A 41-year-old female, with a history of pulmonary tuberculosis, was admitted to our hospital with multiple indeterminate splenic lesions. Gray-scale ultrasonography demonstrated splenomegaly with numerous well-defined hypoechoic masses. Abdominal contrast-enhanced computed tomography (CT) showed an enlarged spleen with multiple irregular-shaped, peripherally enhancing, hypodense lesions. Positron emission CT revealed numerous abnormal hyperglycemia foci. These imaging findings strongly indicated the possibility of infectious disease as the primary concern, with neoplastic lesions requiring exclusion. To obtain the precise pathological diagnosis, the US-guided coaxial CNB of the spleen was carried out. The patient did not express any discomfort during the procedure. CONCLUSION: Percutaneous US-guided coaxial CNB is an excellent and safe option for obtaining precise splenic tissue samples, as it significantly enhances sample yield for exact pathological analysis with minimum trauma to the spleen parenchyma and surrounding tissue.

16.
Mitochondrial DNA B Resour ; 9(3): 403-407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545568

RESUMO

Chrysanthemum × morifolium Ramat 1792 cultivar 'Hangbaiju', also known as 'Hangzhou White Chrysanthemum', originates from Tongxiang City, Zhejiang Province, China. It is celebrated as one of Zhejiang's 'eight flavors'. In this study, we reported the complete chloroplast genome of Chrysanthemum × morifolium cultivar 'Hangbaiju'. The genome has a circular structure of 151,110 bp containing a large single-copy region (LSC) of 82,851 bp, a small copy region (SSC) of 18,351 bp, and two inverted repeats (IR) of 24,936 and 24,972 bp in length. It comprises 128 genes: 85 protein-coding gene, 8 ribosomal RNA (rRNA) genes, and 35 transfer RNA (tRNA) genes. Phylogenetic analysis, based on complete chloroplast genomes, demonstrates that Chrysanthemum × morifolium 'Hangbaiju' shares a close genetic cluster with Chrysanthemum × morifolium 'Fubaiju' (MT1919691.1). Notably, 'Fubaiju' was introduced to Macheng, Hubei Province from Tongxiang in 1968 according to public information. The chloroplast genome data, coupled with morphological and historical records, strongly suggest that they are the same variety known by different names based on their cultivation locations.

18.
Materials (Basel) ; 17(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541433

RESUMO

The 1100 aluminum alloy has been widely used in many industrial fields due to its high specific strength, fracture toughness, excellent thermal conductivity, and corrosion resistance. In this study, the corrosion behavior of the homogenized and hot-extruded 1100 aluminum alloy in acid salt spray environment for different time was studied. The microstructure of the 1100 aluminum alloy before and after corrosion was characterized by an optical microscope (OM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and a laser scanning confocal microscope (LSCM). The difference in corrosion resistance between the homogenized and extruded 1100 aluminum alloy was analyzed via the electrochemical method. The results indicate that after hot extrusion at 400 °C, the microstructure of the 1100 aluminum alloy changes from an equiaxed crystal structure with (111) preferentially distributed in a fibrous structure with (220) preferentially distributed. There was no obvious dynamic recrystallization occurring during extrusion, and the second-phase particles containing Al-Fe-Si were coarse and unevenly distributed. With the increase in corrosion time, corrosion pits appeared on the surface of the 1100 aluminum alloy, and a corrosion product layer was formed on the surface of the homogenized 1100 aluminum alloy, which reduced the corrosion rate. After 96 h of corrosion, the CPR of the extruded samples was 0.619 mm/a, and that of the homogenized samples was 0.442 mm/a. The corrosion resistance of the extruded 1100 aluminum alloy was affected by the microstructure and the second phase, and no protective layer of corrosion products was formed on the surface, resulting in a faster corrosion rate and deeper corrosion pits.

19.
Int J Biol Sci ; 20(4): 1471-1491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385084

RESUMO

N6-methyladenosine (m6A) is important in the physiological processes of many species. Methyltransferase-like 16 (METTL16) is a novel discovered m6A methylase, regulating various tumors in an m6A-dependent manner. However, its function in bladder cancer (BLCA) remains largely unclear. In the present study, we found that low expression of METTL16 predicted poor survival in BLCA patients. METTL16 inhibited the proliferation and cisplatin-resistance function of bladder cancer cells in vitro and in vivo. In addition, METTL16 reduced the mRNA stability of prostate transmembrane protein androgen induced-1 (PMEPA1) via binding to its m6A site in the 3'-UTR, thereby inhibited the proliferation of bladder cancer cells and increased the sensitivity of cisplatin through PMEPA1-mediated autophagy pathway. Finally, we found that hypoxia-inducible factor 2α (HIF-2α) exerted its tumor-promoting effect by binding the METTL16 promoter region to repress its transcription. Taken together, High expression of METTL16 predicted better survival in BLCA. METTL16 significantly inhibited bladder cancer cell proliferation and sensitized bladder cancer cells to cisplatin via HIF-2α-METTL16-PMEPA1-autophagy axis in a m6A manner. These findings might provide fresh insights into BLCA therapy.


Assuntos
Adenina/análogos & derivados , Cisplatino , Neoplasias da Bexiga Urinária , Masculino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Proliferação de Células/genética , Autofagia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Membrana/metabolismo , Metiltransferases/genética
20.
Front Bioeng Biotechnol ; 12: 1331078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328445

RESUMO

Background: Small-diameter (<6 mm) artificial vascular grafts (AVGs) are urgently required in vessel reconstructive surgery but constrained by suboptimal hemocompatibility and the complexity of anastomotic procedures. This study introduces coaxial electrospinning and magnetic anastomosis techniques to improve graft performance. Methods: Bilayer poly(lactide-co-caprolactone) (PLCL) grafts were fabricated by coaxial electrospinning to encapsulate heparin in the inner layer for anticoagulation. Magnetic rings were embedded at both ends of the nanofiber conduit to construct a magnetic anastomosis small-diameter AVG. Material properties were characterized by micromorphology, fourier transform infrared (FTIR) spectra, mechanical tests, in vitro heparin release and hemocompatibility. In vivo performance was evaluated in a rabbit model of inferior vena cava replacement. Results: Coaxial electrospinning produced PLCL/heparin grafts with sustained heparin release, lower platelet adhesion, prolonged clotting times, higher Young's modulus and tensile strength versus PLCL grafts. Magnetic anastomosis was significantly faster than suturing (3.65 ± 0.83 vs. 20.32 ± 3.45 min, p < 0.001) and with higher success rate (100% vs. 80%). Furthermore, magnetic AVG had higher short-term patency (2 days: 100% vs. 60%; 7 days: 40% vs. 0%) but similar long-term occlusion as sutured grafts. Conclusion: Coaxial electrospinning improved hemocompatibility and magnetic anastomosis enhanced implantability of small-diameter AVG. Short-term patency was excellent, but further optimization of anticoagulation is needed for long-term patency. This combinatorial approach holds promise for vascular graft engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...